3.1.97 \(\int \frac {x^3 (a+b \sec ^{-1}(c x))}{(d+e x^2)^2} \, dx\) [97]

3.1.97.1 Optimal result
3.1.97.2 Mathematica [B] (warning: unable to verify)
3.1.97.3 Rubi [A] (verified)
3.1.97.4 Maple [C] (warning: unable to verify)
3.1.97.5 Fricas [F]
3.1.97.6 Sympy [F(-1)]
3.1.97.7 Maxima [F]
3.1.97.8 Giac [F(-1)]
3.1.97.9 Mupad [F(-1)]

3.1.97.1 Optimal result

Integrand size = 21, antiderivative size = 570 \[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \sec ^{-1}(c x)}{2 e \left (e+\frac {d}{x^2}\right )}-\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{3/2} \sqrt {c^2 d+e}}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {i b \operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{2 e^2} \]

output
1/2*(-a-b*arcsec(c*x))/e/(e+d/x^2)-(a+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^ 
2/x^2)^(1/2))^2)/e^2+1/2*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^( 
1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsec(c*x))*ln(1 
+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2 
+1/2*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^ 
(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2 
/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2+1/2*I*b*polylog(2,- 
(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e^2-1/2*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^ 
2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2-1/2*I*b*polylog(2, 
c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^2- 
1/2*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^ 
2*d+e)^(1/2)))/e^2-1/2*I*b*polylog(2,c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^ 
(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^2-1/2*b*arctan((c^2*d+e)^(1/2)/c/x/e^(1 
/2)/(1-1/c^2/x^2)^(1/2))/e^(3/2)/(c^2*d+e)^(1/2)
 
3.1.97.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1213\) vs. \(2(570)=1140\).

Time = 1.17 (sec) , antiderivative size = 1213, normalized size of antiderivative = 2.13 \[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\frac {\frac {2 a d}{d+e x^2}+\frac {b \sqrt {d} \sec ^{-1}(c x)}{\sqrt {d}-i \sqrt {e} x}+\frac {b \sqrt {d} \sec ^{-1}(c x)}{\sqrt {d}+i \sqrt {e} x}+2 b \arcsin \left (\frac {1}{c x}\right )+8 i b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+8 i b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+2 b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \sec ^{-1}(c x) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \sec ^{-1}(c x) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-4 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-4 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-4 b \sec ^{-1}(c x) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )-\frac {b \sqrt {e} \log \left (\frac {2 \sqrt {d} \sqrt {e} \left (\sqrt {e}+c \left (i c \sqrt {d}-\sqrt {-c^2 d-e} \sqrt {1-\frac {1}{c^2 x^2}}\right ) x\right )}{\sqrt {-c^2 d-e} \left (\sqrt {d}-i \sqrt {e} x\right )}\right )}{\sqrt {-c^2 d-e}}-\frac {b \sqrt {e} \log \left (\frac {2 \sqrt {d} \sqrt {e} \left (-\sqrt {e}+c \left (i c \sqrt {d}+\sqrt {-c^2 d-e} \sqrt {1-\frac {1}{c^2 x^2}}\right ) x\right )}{\sqrt {-c^2 d-e} \left (\sqrt {d}+i \sqrt {e} x\right )}\right )}{\sqrt {-c^2 d-e}}+2 a \log \left (d+e x^2\right )-2 i b \operatorname {PolyLog}\left (2,-\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \operatorname {PolyLog}\left (2,\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \operatorname {PolyLog}\left (2,-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \operatorname {PolyLog}\left (2,\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i b \operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{4 e^2} \]

input
Integrate[(x^3*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 
output
((2*a*d)/(d + e*x^2) + (b*Sqrt[d]*ArcSec[c*x])/(Sqrt[d] - I*Sqrt[e]*x) + ( 
b*Sqrt[d]*ArcSec[c*x])/(Sqrt[d] + I*Sqrt[e]*x) + 2*b*ArcSin[1/(c*x)] + (8* 
I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqr 
t[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + (8*I)*b*ArcSin[Sqrt 
[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Tan 
[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + 2*b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] - 
Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 4*b*ArcSin[Sqrt[1 + (I* 
Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I 
*ArcSec[c*x]))/(c*Sqrt[d])] + 2*b*ArcSec[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[ 
c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 4*b*ArcSin[Sqrt[1 - (I*Sqrt[ 
e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*Arc 
Sec[c*x]))/(c*Sqrt[d])] + 2*b*ArcSec[c*x]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d 
 + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/( 
c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c* 
x]))/(c*Sqrt[d])] + 2*b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e]) 
*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt 
[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/( 
c*Sqrt[d])] - 4*b*ArcSec[c*x]*Log[1 + E^((2*I)*ArcSec[c*x])] - (b*Sqrt[e]* 
Log[(2*Sqrt[d]*Sqrt[e]*(Sqrt[e] + c*(I*c*Sqrt[d] - Sqrt[-(c^2*d) - e]*Sqrt 
[1 - 1/(c^2*x^2)])*x))/(Sqrt[-(c^2*d) - e]*(Sqrt[d] - I*Sqrt[e]*x))])/S...
 
3.1.97.3 Rubi [A] (verified)

Time = 1.66 (sec) , antiderivative size = 634, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5763, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5763

\(\displaystyle -\int \frac {x \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {x \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^2}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right ) x}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^2}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^2}+\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^2}-\frac {a+b \arccos \left (\frac {1}{c x}\right )}{2 e \left (\frac {d}{x^2}+e\right )}-\frac {\log \left (1+e^{2 i \arccos \left (\frac {1}{c x}\right )}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}-\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^2}+\frac {i b \operatorname {PolyLog}\left (2,-e^{2 i \arccos \left (\frac {1}{c x}\right )}\right )}{2 e^2}-\frac {b \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 e^{3/2} \sqrt {c^2 d+e}}\)

input
Int[(x^3*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 
output
-1/2*(a + b*ArcCos[1/(c*x)])/(e*(e + d/x^2)) - (b*ArcTan[Sqrt[c^2*d + e]/( 
c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(2*e^(3/2)*Sqrt[c^2*d + e]) + ((a + b 
*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sq 
rt[c^2*d + e])])/(2*e^2) + ((a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ 
(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^2) + ((a + b*ArcCo 
s[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2 
*d + e])])/(2*e^2) + ((a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^(I*Arc 
Cos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^2) - ((a + b*ArcCos[1/(c 
*x)])*Log[1 + E^((2*I)*ArcCos[1/(c*x)])])/e^2 - ((I/2)*b*PolyLog[2, -((c*S 
qrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/e^2 - ((I/2) 
*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e 
])])/e^2 - ((I/2)*b*PolyLog[2, -((c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[ 
e] + Sqrt[c^2*d + e]))])/e^2 - ((I/2)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos 
[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^2 + ((I/2)*b*PolyLog[2, -E^((2 
*I)*ArcCos[1/(c*x)])])/e^2
 

3.1.97.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5763
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.1.97.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.81 (sec) , antiderivative size = 577, normalized size of antiderivative = 1.01

method result size
parts \(\frac {a d}{2 e^{2} \left (e \,x^{2}+d \right )}+\frac {a \ln \left (e \,x^{2}+d \right )}{2 e^{2}}-\frac {b \,c^{2} x^{2} \operatorname {arcsec}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}+\frac {i b \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 \left (c^{2} d +e \right ) e^{2}}+\frac {i b \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {i b \,c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}-\frac {i b \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {i b \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {b \,\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {b \,\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}\) \(577\)
derivativedivides \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arcsec}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {i \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}+\frac {i \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}\right )}{c^{4}}\) \(599\)
default \(\frac {\frac {a \,c^{6} d}{2 e^{2} \left (c^{2} e \,x^{2}+c^{2} d \right )}+\frac {a \,c^{4} \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{2 e^{2}}+b \,c^{4} \left (-\frac {c^{2} x^{2} \operatorname {arcsec}\left (c x \right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e}-\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {i \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}+\frac {i \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {i \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 e^{2}}+\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right )}{2 e^{2} \left (c^{2} d +e \right )}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}-\frac {\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{2}}\right )}{c^{4}}\) \(599\)

input
int(x^3*(a+b*arcsec(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*d/e^2/(e*x^2+d)+1/2*a/e^2*ln(e*x^2+d)-1/2*b*c^2*x^2*arcsec(c*x)/(c^2 
*e*x^2+c^2*d)/e+1/2*I*b*(e*(c^2*d+e))^(1/2)/(c^2*d+e)/e^2*arctanh(1/4*(2*c 
^2*d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2+2*c^2*d+4*e)/(c^2*d*e+e^2)^(1/2))+I*b 
/e^2*dilog(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))-1/4*I*b*c^2/e^2*d*sum((_R1^2 
+1)/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^( 
1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d* 
_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))-1/4*I*b/e^2*sum((_R1^2*c^2*d+c^2*d+4*e)/(_ 
R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/ 
_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+( 
2*c^2*d+4*e)*_Z^2+c^2*d))+I*b/e^2*dilog(1+I*(1/c/x+I*(1-1/c^2/x^2)^(1/2))) 
-b/e^2*arcsec(c*x)*ln(1+I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))-b/e^2*arcsec(c*x) 
*ln(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))
 
3.1.97.5 Fricas [F]

\[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^3*arcsec(c*x) + a*x^3)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.1.97.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**3*(a+b*asec(c*x))/(e*x**2+d)**2,x)
 
output
Timed out
 
3.1.97.7 Maxima [F]

\[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{3}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^3*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
1/2*a*(d/(e^3*x^2 + d*e^2) + log(e*x^2 + d)/e^2) + b*integrate(x^3*arctan( 
sqrt(c*x + 1)*sqrt(c*x - 1))/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.1.97.8 Giac [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x^3*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
Timed out
 
3.1.97.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^3\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^3*(a + b*acos(1/(c*x))))/(d + e*x^2)^2,x)
 
output
int((x^3*(a + b*acos(1/(c*x))))/(d + e*x^2)^2, x)